Job Descriptions, Definitions Roles, Responsibility: Biological Scientists

Biological scientists study living organisms and their relationship to their environment. They research problems dealing with life processes. Most specialize in some area of biology such as zoology (the study of animals) or microbiology (the study of microscopic organisms). (Medical scientists, whose work is closely related to that of biological scientists, are discussed elsewhere in the Handbook.)

Many biological scientists work in research and development. Some conduct basic research to advance knowledge of living organisms, including viruses, bacteria, and other infectious agents. Basic biological research continues to provide the building blocks necessary to develop solutions to human health problems, and to preserve and repair the natural environment. Biological scientists mostly work independently in private industry, university, or government laboratories, often exploring new areas of research or expanding on specialized research started in graduate school. Those who are not wage and salary workers in private industry typically submit grant proposals to obtain funding for their projects. Colleges and universities, private industry, and Federal Government agencies, such as the National Institutes of Health and the National Science Foundation, contribute to the support of scientists whose research proposals are determined to be financially feasible and to have the potential to advance new ideas or processes.

Biological scientists who work in applied research or product development use knowledge provided by basic research to develop new drugs and treatments, increase crop yields, and protect and clean up the environment. They usually have less autonomy than basic researchers to choose the emphasis of their research, relying instead on market-driven directions based on the firm’s products and goals. Biological scientists doing applied research and product development in private industry may be required to describe their research plans or results to nonscientists who are in a position to veto or approve their ideas, and they must understand the potential cost of their work and its impact on business. Scientists increasingly are working as part of teams, interacting with engineers, scientists of other disciplines, business managers, and technicians. Some biological scientists also work with customers or suppliers and manage budgets.

Those who conduct research usually work in laboratories and use electron microscopes, computers, thermal cyclers, or a wide variety of other equipment. Some conduct experiments using laboratory animals or greenhouse plants. This is particularly true of botanists, physiologists, and zoologists. For some biological scientists, research also is performed outside of laboratories. For example, a botanist might do research in tropical rain forests to see what plants grow there, or an ecologist might study how a forest area recovers after a fire. Some marine biologists also work outdoors, often on research vessels from which they study various marine organisms such as marine plankton or fish.

Some biological scientists work in managerial or administrative positions, usually after spending some time doing research and learning about the firm, agency, or project. They may plan and administer programs for testing foods and drugs, for example, or direct activities at zoos or botanical gardens. Some work as consultants to business firms or to government, while others test and inspect foods, drugs, and other products.

Recent advances in biotechnology and information technology are transforming the industries in which biological scientists work. In the 1980s, swift advances in basic biological knowledge related to genetics and molecules spurred growth in the field of biotechnology. Biological scientists using this technology manipulate the genetic material of animals or plants, attempting to make organisms more productive or resistant to disease. Research using biotechnology techniques, such as recombining DNA, has led to the production of important substances, including human insulin and growth hormone. Many other substances not previously available in large quantities are starting to be produced by biotechnological means; some may be useful in treating cancer and other diseases. Today, many biological scientists are involved in biotechnology. Those who work on the Human Genome project continue to isolate genes and determine their functionality. This work continues to lead to the discovery of the genes associated with specific diseases and inherited traits, such as certain types of cancer or obesity. These advances in biotechnology have opened up research opportunities in almost all areas of biology, including commercial applications in agriculture, environmental remediation, and the food and chemical industries.

Most biological scientists are further classified by the type of organism they study or by the specific activity they perform, although recent advances in the understanding of basic life processes at the molecular and cellular levels have blurred some traditional classifications.

Aquatic biologists study micro-organisms, plants, and animals living in water. Marine biologists study salt water organisms, and limnologists study fresh water organisms. Much of the work of marine biology centers on molecular biology, the study of the biochemical processes that take place inside living cells. Marine biologists sometimes are mistakenly called oceanographers, but oceanography is the study of the physical characteristics of oceans and the ocean floor. (See the statement on environmental scientists and geoscientists elsewhere in the Handbook.)

Biochemists study the chemical composition of living things. They analyze the complex chemical combinations and reactions involved in metabolism, reproduction, growth, and heredity. Biochemists and molecular biologists do most of their work in the field of biotechnology, which involves understanding the complex chemistry of life.

Botanists study plants and their environment. Some study all aspects of plant life, including algae, fungi, lichens, mosses, ferns, conifers, and flowering plants; others specialize in areas such as identification and classification of plants, the structure and function of plant parts, the biochemistry of plant processes, the causes and cures of plant diseases, the interaction of plants with other organisms and the environment, and the geological record of plants.

Microbiologists investigate the growth and characteristics of microscopic organisms such as bacteria, algae, or fungi. Most microbiologists specialize in environmental, food, agricultural, or industrial microbiology; virology (the study of viruses); or immunology (the study of mechanisms that fight infections). Many microbiologists use biotechnology to advance knowledge of cell reproduction and human disease.

Physiologists study life functions of plants and animals, both in the whole organism and at the cellular or molecular level, under normal and abnormal conditions. Physiologists often specialize in functions such as growth, reproduction, photosynthesis, respiration, or movement, or in the physiology of a certain area or system of the organism.

Biophysicists study the application of principles of physics, such as electrical and mechanical energy and related phenomena, to living cells and organisms.

Zoologists and wildlife biologists study animals and wildlife—their origin, behavior, diseases, and life processes. Some experiment with live animals in controlled or natural surroundings, while others dissect dead animals in order to study their structure. They also may collect and analyze biological data to determine the environmental effects of current and potential use of land and water areas. Zoologists usually are identified by the animal group studied—ornithologists (birds), mammalogists (mammals), herpetologists (reptiles), and ichthyologists (fish).

Ecologists study the relationships among organisms and between organisms and their environments, and the effects of influences such as population size, pollutants, rainfall, temperature, and altitude. Utilizing knowledge of various scientific disciplines, they may collect, study, and report data on the quality of air, food, soil, and water.

(Agricultural and food scientists, who are sometimes referred to as biological scientists, are discussed elsewhere in the Handbook.)